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ABSTRAZT

Consider fractional factorial designs of resolution IV, 1.¢. where we wish
to estiiate only <‘ne main effects but the 2- factor interactions are not
negligible, Such designs with desirable size are greatly u2eded both in
agriculture and industry, and both in umiresponse and multiresponse experiments,
The usual completely orthogonal designs involve N runs, where i! is a ..ultiple of
8, In many situations, we have a set of exactly N homogeneous experiment units,
vhare N is not divisible by §, For example, we may have N = 22 new jet bombers
¥ 7 certain kind being developed for defense purposes. Here the sampling units,
namely tL» jets, are expensive, and furthermore cannot easily be increased in
number juir for the sake of our experiment. If we want to tast these jets under
a factorial design of resolution IV using the present avajlable desizgns, then we
can use calv 1C of them, since 16 is tne multiple of 8 nearest to but not greater
than 22, Thig vow.] result in a loss of 6/22 of the available information.

Tnus the purp..e of this paper is to obtain good nonortnogonal or irregular
designs of resclution " For the 2" series. Besides being of desirable size, a
nonorthogonal design should be good with respect to its covariance matrix V of
the estimates, In this paper, such designs (with even N) are obtained. These
designs are optimal with respec: U the trace, determinant and the largest root
criteria which are shown to b: equi:zlent. In other words, among all possible

designs a given value of N, our designs minimize the trace, the determinant and

the largest root of V,
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Sumnary. In this paper, we develop a general theory of balanced 2m4fractional
‘ i ‘ "

o

factorial designiéwhich~pe;mit estimation of main effects orthogonally to 2-

factor interactions and the general mean, whose size N is desirably small, and
which are optimal with respsct to various standard criteria involving the variance-
covariance matriz of the estimates. For various practical values of m and N,

a method is given by which such optimal designs can be easily obtained from known
balanced incomplete block designs, (BIBD's).

e

1. Intrcduction ¢

Fractional factorial designs, discovered by Finney (1845), are finding
increasing use in biological, industrial, and defense research. A large number
of authors have contributed to the development of the various facets of the theory.
For the reader interested in an introduction to the same, a list of such authors
is included in tle references at the enda. We stress that this list is by no means
exhaustive; it is only illustrative.

In many cases, the main effects are of immediate or primary iaterest, but
ti.e two-factor interactions cannot be assumed negligible. "Good" designs for
various symmetrical and asymmetrical factorials need therefore to be developed.
The properties of "goodness" that are most important, and most often even necessary
include the following: (a) The design should be of smsll size, i.e., the number

of cobservations shculd be the desirable minimum. (b) The design should have
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balance or at leist partial balance. This lends facility rot only to the analysis
of the design, but also to the interpretatior and understar.. ng of the results.
{c) Tho design should further satisfy some reasonable optimality condition on
the variance covariance-matrix of the estimates.

Let éldenota tne (best linecar unbiased) estimate of the jzrameter vector L.

g

The usual variance criteria under (c¢) above include (i) trace, (ii) determinant,

and (iii) largest root criterion. A design T is said to satisfy these criteria if,

g

respectivety, the irace, determinant, or largest root of VT is a minimum for this

design within the class of all possible designs of fixed size. Here VT = Cov (E),

when L is estimated using T.
In this paper we shall discuss designs satisfying all the criteria mentioned

above.
2. Some Przliminaries

We shall use a notation similar to the cne in Bose and Srivastava (13964},
and for thz facility of the reader, repeat (without detailed proof) some basic

theory of fractional designs developed therein. Treatment combinations (and also
iy 3 3
their "true effects") are denoted by {all a22 cees am'} , or equivalently

(jl’ i2, ey jm) where j's ¢ {0,1}. The k factor interactions between factors
A, , A, , ..., A, , 33y is denoted by (A, A, , .... A, ). As usual, the interactions
i i i i i, i

1 2 k 1l 72 k
2 are defined, in symbolic notation by

.1 0,10 1 0,,.1 .0 1.0
1A2 .ee Ak = (al-al)(a2~a2) .o (ak-ak)(ak+l+ak+l)...(am +am),

and similarly for any set of k factors, where 1 < k < m. The symbol ¢, which

(2.1) A

denotes the grand total of all 2™ assemblies, is also given by (2.1), if the

r.h.s. is assumed to have plus sign in each bracket.

o .y~ o
I
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Let m denote the column vector of A's in the standard order:
(2.2) Wt o= {3 Al,..., Am; AlA2’ AlA3"'°’ Am-lAm; A1A2A3, veel
If I_(2m x 1) denotes the vector of assemblies, then (2..) implies m = DI,
where D is a (2" x 2™) matrix, and the sum of products of the corresponding
/2

. . . . -m .
elements in any two rows of D is zero. It is easily seen that 2 D is an

orthogonal matrix and

(2.3)  1=2"pam .

Let 7 be partitioned as

(2.4) a' o= (Eff}é)

where L (say, (v x 1}, where v = 1 + m(m+1)/2) is the column vector containing

all effects up to and including all the two factor interactions, and Eo(with

(2™ - v) elements) is the vector containing all 3-factor and higher order interactions.
In this paper, EO is assumed zerc. Then (2.4) implies

(2.5) T=27pL

where Da is the matrix obtained by cutting out the (2" - v) columns of D' which

correspond to I in (2.3), ‘

Let T be a fractional design, i.e. a set of assemblies in which any given
treatment may not cccur or may occur once or move times. Let the expected values
of the assemblies in T, writter in the form of a vector, be denoted by z* whcre,

it is assumed there are no block effects. Let E' be the matrix

obtained from Dé by cutting out the last (2" - V) columns corresponding to EO’
and also by omitting (or repeating) the rcws corresponding to treatment combinatious
omitced (or repeated) from 1. to get z*. Note that the rows of E' are arranged in

such a way as ¢o correspond to the elements of z*. Let z be the vector of

observations corresponding to z¥. Assuming no bleck effects the model is
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{2.6) Exp (z)

1]
3

var (2)

n
Q
-

where 0% is unknown, and In is the (n X n) identity matrix.

Then the normal equations are
(2.7) EE'q = E2
- where q stands for the estimate of 3 = 2 'L.

" Let T be a fractional design containing N assemblies. Then the symbol

3132"'31, ]l J2 J

) N . . . a,
iyise..iy i i, i

denctes the number of assemblies « such that the symbol

3

2 jr j
.+ @, occurs as a part of w. The symbols ay
2

a

He Gt

1
2
1

e

are to be regarded as

indeterminates and, as such, expressions like the above are operated upen, over

the field of real numbers, like ordinary products of indeterminates.

Consider the set P of all polynomials with real coefficients in the symbols

a‘},(l<iim

3 < j = 6, 1) and of degree 1 in each symbol, such that no term

£
involves both ag and as, for any i. In the sequel, we shall be :oncerned with

only such polynomials; more information on these can be had from Srivastava (1967).

Then we define

(2.8) X(Bpl + 6p2) = Bl(pl) + 6X(p2),
. rn L 0 0.1 10 01
for all p,, p, € P. Thus for example A{2aja, - 3ajaj) = 247, - 3,5,

If Tl and T2 are two fractional designs, then Tl 8 T2 shall denote the design

in which any treatment combination w occurs (rl + r2) times, provided w occurs

vespectively ry and r, times in Tl and T2. Then if ¢ P, we have

(2.9) l(p,TleTz) = a(p,T) + A{p,T2),

where A(p,T) denotes the value of A(p) obtained for the set of assemblies T.

— e e e
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Given any fraction T the matrix EE!' can be directly expressed using the
A-operator. Every row, and hence every column, of EE' corresponds to exactly
one element of L. Indeed, the element in the (i,j) position of EL' corresponds

to the elements in the ith and ?"h position of L. An element of L can be expressed

3, 3
as Ail A12 where jl, j, = Cer L. Then corresponding to {u} (the general rean),
1 2
{Ai} (the main effescts), and {AiAj} (the set of two-factor interactions, the

maitrix (EE') can be partitioned in the form

{u} {a.} {A.AL}
i 13

P “13—] {u}

| -
(2.10) EE' = M22 Mos {Ai}

Syi.. M33 J {AiAj}

Theorem 2.1. We have, for distinct i, j, k, and &,

(2.11) e(u) = e(A,,A,) = e(A.A., ALA.) = N
i27i 173 j

b Y
(2.12)  e(A..A.) = e(A.,A.A,) = Aar - a2)
1’73 1713 3 J
_ . .l 0.1 0
(2.13) e(Ai,Aj) = e(u,AiAj' =z e(AiAk, AjAk) = )\(ai ai)(aj aj)
1 0 1 0 1 0
.14 . oA, = . - a. . - a, -
(2.14) e(Al,PjAk) A(al al)(a] aJ)(ak ak)

1 0 1l 0., 1 0 1 0
A = - - - -
(2.15) E(AiAj’Ak”i) )\(ai ai)(aj aj;(ak ak)(a2 ag)
The vaiue of the A-operater for the above polynomials can be calculated by

using the definiticn et (2.5). For example

1 0 1 0 1 O
= yat - - (a> -
(2.186) e(Ai,AjAk) Alay ai)(aj aj)‘ak ak)
= A(alalal - alal o atalal - 2%tal s aa.a, + a%aa®
173k ijak k jak k ijak

11 .116  .3101 .01l  .:00 010  .001 _ .000
= A5k T Mgk T Rk T Mage T Raa T Ao T sk T ras

ey st S0 B sttt A GBS T e e

K Eia



cuen ‘AMWQ‘;?« \

From these equations and the definition of the A-operator it can be checked that
if Tl and T2 are two fractional designs, then

(2.17)  (EE')g oo = (EE')q + (EE')q

1772 1 2

for any T, where, (EE')T is the matrix (EE') corresponding to the design T.

ngo

A fractional design T with N assembli=s can be represented as an (m x N)

X th
matrix T = (31’323"°’EN]’ where the column vernxc., Er corresponds to the r" assembly

(pgoeesipm)-

Example 2.1. As an example consider the follcwing fractional design T for m=S.

This design is a special case of the series III cesigns given in section U4,

JRT—— T LR A i L TR o

L0001 031031221010 °¢0C1
El 100010001 11¢ 10 1
T = © 11060011001 11¢G6G 1i
5011000 9010911 1o 1
L0101 10010100110 1
It is easily seen using theorem 2.1 that 311 diagonal elements of M = EE' equal
=183 _ - _ 1 o, _ 4 .0 _
N(=16}. Further we have that M, = 015, since e(u,Ai) = k(ai ai) = A - A =0,

whers O deﬁotes a (u x v) matrix with zeros everywhere. Also we see that for

all i # 3,
1
e(A.,A) = Mat - a0t - ) = acelal - atal - &%t 4 %Y
1’75 i i7%5 j i%j i73 i%3 i
=t -l o % -,

ij ij ij ij
Hence M22 = 1615 and Ml3 = 01,10' Next we have from (2.186)

111 llO 101 011 100 10 001 . 000

e(ALAA) = A = Ahe T M55k T Magk T Mask T Rk oMk T Mk
which is also zero for 211 i, j, and k. Thus H23 = 05 16 Similarly, it cam be
k]

checked that for H33, all the off-diagonal elements are zero, except that

= el = -
(B A)5A00.) = (A ALL8,80) = e(A)ALAM,)

[

J

i
i
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Factoris]l Experiment

. : m : : . sas
be a fracticnal design for a 2 factorial experiment with N assemilies.

I

Recall that T is regarded as ad (m x N) matrizx of Q's and 1l'r where each column

R

corresponds to an assenbly.

s

Def. 3.1. (a) T is seid to be of resclution IV, if alil main affects are estimable

under the assumption that 3

3-factor and higher order interactions are zero. (Notice
that we have no such assumption regarding 2-factor interactions; they might pessibly

. be nonzero). If, furthesr, the estimates of the main effects have zero correlation

with the escimates of every estimable linear combination of the gemeral “=2aun u aac
the two-factor interactions, then T is said to Me =

+h

resoluiion JV#,
{b) In general, in any given sitnation, if T is such that ail parameters

-

of interest are estimable, then T is called nonsingular. Thug, i~ this paper, the

properties of nonsingularity and resolution IV are eguivalen:.
4

(c)

The matrix T (x x N) is said to be (1,0) symnetric of strength t (< m),

if every (t x N) submatrix remains unchanged by interchanging the symbols 0 and 2,
except for the order in wnich the columns aprear. If ¢ zm, T is called

"ccmpletely (1,0) symmetricY. (Cleariy, strength t implies strength r, for

r < t.

Also, the authors hav: sxamplies of arrays T, which ame of = cer*aip

strength r, but not of strasngth &, for scme t > 1}

e

(d) T is said to be balanced if ccv (i, A;), var (Qi) and cov (4., A.)
1 - J
{i # i), are independent of i ang j.
Theorem 3.1. T is of recolutior IV®* if aud only if it is {1,0) symmetric of

strength 3, and (EE')T is nonsingular.

Proof. tThat (FE!

PR

) be nonsingular is cbviously necessarv. Main effects wiil be

orthogonal to general mean and two factor interactions if

and only if o ard ¥
~

E 22
1 £ in equavion (2.10) are zero matrices. Thus we have from (2.11)-(2.15}:
e £
e x 1 ]
E % (3.1) 0 =el(u,8,) =4, -, = e(A,AA); J=1,2, ...,m
% 3 ] 3 1Tt
3 .
& g
=
.

A
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= ) Thus l; = Ag, for all i. Now since l? = A?S + 1?§ for 2ll 8, and all i # j, we
g have
E 1 0 g 01l 11 01 0 1
AL e300 580 L 500 0 000, 00
23 23 15 13 13 3 1} 13

BN

vherve tlie second eguation is obtained from the first by interchanging i and j. Hence,

v

. 1 o) 0
s (3.2) RF{ = A?Y and l}f =% . for all i # 3
: 33 i3 i3 "i3
% Since ¥,, is zero, E(Ai,AjAk) is zere for all distinet i, j and k. Thus, from (2.18)
g
H

- _ i 105 010 . ,002 590 o1l 101 110 |
¢ (3.3 0= A%k P A T Ak YRk 7 Mae T Mgk T Ragk T Mgk
H som (0B _ ,0B0 | L oBl mmtane (2 D) am s
¢ As bhefore, since Ai. = Xijk % Ak o equations (3.2) and (3.3) imply
{ o 111,000 _ .100 .03} _ 010 101 _ .00l 110 _
: AT Y Y e e I e

which proves the necessity part. The sufficiency is obvious by using the ebove
arguments in reverse.

Let I' Le partitioned columu-wise according to general mean, mzin effects, ani

two facror interactions, E' = {Eé: Ei: Eé]‘ Then from (2.10}, qu = ElEi' He.ce
: fcr 2 nonsingular T, we get sSrom (2.7),
(3.8 [hiahoe b 1= 2% 25700 2
. r. i ke R = 2 \~‘-_~l) nyZ
where A; is the estimata of the main effect 4., (Clearly we have
. A - 2 -2nm -1
Py T vt .. 2 -
coval, Byy aees At s 2 v aElbi) .
Treovexn 3.7. Let T saticfy the conditions of theorem 2.1. A necessary and
e . I - . 3 mmans P 11
sutficient conditinn that T be a balanced fractional design is that Xij = L,

a constant for «11 . # 3.
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Proof. Suppose Ai% = w, for all 1 # j. Now

]
(3.6)  e(A.,A.) = A(ar + ad) = N;
iy i i
1 0 1 0 11 10 0l 00
3.7 .JA.) = . - a. ., — a,) T Ae. = As. = - N.
( ) a(Al,Aj) A(al al)(aJ aj) Al] Al] xij + A.. = 4w - N
Hence
= 2 - ( - .
(3.8) M22 (2N QQIm + (4w N)Jmm s and
(3.9) ML= (g - h)I_+ hJ where
“22 “m Ymm?
1 m-2
3. - .
(3.102) ¢ ml4(m-1)ow - (m-2)N] * m{2N-4w)
- 1 S S
(3.10b) b = e T 2N = T

(3.20¢) g - %n = 1/[2N - 4e]

Hence, if Ai} is a constant w for all i # j, then T is balanced. On the other hand

]
~

if T is balanced, ther 1;; has all dizgonal elements same and all off-diagonal

element same, so that M22 is of the form (3.8) for some value of w. Hence (3.6)
holds for all i # j. This completes the proof.

It follows from the above theorem that if T is a balanced fractional design,
then T is the incidence matrix of a BIBDU, (i.e. a BIBD with possibly unequal

biock sizes), and F- ing parameters of the form (v¥ = m, b* = N, r¥ = N/2, and

ol

A¥ = w). This observation provides a simple method for obtaining balanced fractiona.

designs. For example. if Tl is the incidence matrix of a BIBDU with parar :ters

(v® =m, b = N/2, r¥, A\%*), then T = Tl ] Ti is a balanced fractional design where

T, is the (1,0) complement of )5 i.e. T

3 1 is obtained from Tl by interchanging

h

1 and 0. It is obvious that T is completely (1,0) syrmetric. Consider the I

and jth rows of Tl. Then, for Tl’ Ai% = A% and x?g = b®* - 2r® + A%, and by the
. o s 11, _ .11 00 ,
method of construction of T, it is clear that xij(T) = Aii(Tl) + A:j(TJ). Hence,

for . we have

’1 VPP R PO AL,
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(3.11) w = b¥ - 2(r% - )
A BIBDU may be easily obtained feom an ordinary BIBD, by cutting out some of the

treatments and perhaps adjoining some blocks containing all treatments and/or

H s
some blocks containing nc treatments. As an example take a (BIBD), with parameters

{v#, b®, pr%, k%, A%) and cut out vy < v¥ vaprieties. Next adioin bl blocks containing

each of the remaining (v#- vl) varieties, and b, blocks containing no varieties.

2

The resulting BIBDU has parameters ((v¥ - vl), (b* + b, + b2), (r® + bl)’

1

(A% + bl))' (It may be beneficial to the interested reader to remark here that
the incidence matrix of a BIBDU is a partially balanced (PB) array of strength
2, the latter being defined for example in Chakravarti (1963) or Srivastava (1967 M.

We now consider the non-singalarity and optimality of the balanced fractional
' i

designs obtained in this manner. .
\ 1

Lemma 3.1. Let T be 3 balanced desigh as in Theorem 3.2. Then (2) The characteristic

roots of M,, are [4(m-1)o - (m-2)N] and [2N - 4&], with multiplicities 1 and (m-1)

!
respectively,

(b) Tre characteristic roots of M;é are [g + (m-1)h] and (g-h) with multiplicities
1 and (m-1) respectively. Also tr(M;;) = mg and IH;;I = [g + (m—l)i’l](g—h)m-l where
¢ and h are given by (3.10).

Proof: Let kl and k2 be constants. Then the matrix klIm has a roct kl with

mnltiplicity m, ard the matrix kQJmm has roots mk, and 0 with multiplicity 1 and

2

(m-1) respectively. Since I and J__ commute, the roots of (k,I_ + k. J ) are
mn m i'm 2"

(kl + mk2) and k, with multiplicities 1 and (m-1). The proof is completed by

appropriate substitution for kl and k2, a~é noting that the trace and determinant

are respectively the sum and the product of the roots.

Theorem 3.3. A necessary andé sufficient condition that a balanced fractional

design T be nonsingular is that

e e e e e o e e Ak . st TR, R T e eemeemes s e o
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(3.12)  [(m-2)/8(m-1YJIT] < w(?) < (1/2)¢],
where T denotes the number of assemblies in T, and o(T) is the value of y associated
with T.

: Proof: The matrix M., = ©_E

22 1 1 is obviously positive semidefinite. 7Thus ¥
i 2 i

22

is ronsingular if and only if all roots of M22 are positive ané tnz result foliows
from lemma 3.1.

Corollary 3.1. Let m be even, and let T be the incidence matrix of a BIBD with

k* = m/2, and v# = m. Then T, considered as a fractionsl design is, sirgular.

However, the balanced design obtained by adjoining tce T (at least) one block

containing all varieties and (at least) one block containing no variety, is

nonsingular.
Proof. Since vir® = b¥k®, and r¥(k#*-1) = AF(vH-1), we aet under the stated

conditions: r* = b%/2, |T| = b%, and A% = w. Thus we have w = b¥*(m-2)/u{m-1).

Hence, by (3.12), T is singular. The fracticnal design T% obtained by adjcinipg
the two blocks has |T#) = b* + 2, and w(T*) = @ + 1. The proof is easily
completed by checking that these values satisty (3.12).
Coroliary 3.2. Let T = Tl e ll, where Tl is the incidence matrix of a BIBDU

&

with parameters v¥ = m,b%,p* A%, Then T is nonsingular if and only if

(3.13) 0 < r* - A% < mb*/u(m-1).

Proof. Clearly {T| = 2b%, and by (3.11), w = b* - 2(p* - A%). Then (3.12} gives
2b*(m-2)/4(m-1) < b¥ - 2(r* - A%) < 2b/2

whiich leads tec (3.13).

[P

g7 : .
Let'?) denote the class of all balanced nonsingular completely (1,0) symmetric
- . s . . . L1 0
fractional designs. Then N is evea, since X~ = A~ for all T e]ﬁi Let}ﬁ% denote
x

the class of all T e/ with |T| = N.
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T

Thevrem J.4., Let T ¢ ENT Then N > 2m, and n, {the numbei of degrees of freedom
for error) satisfies
{3.14) {(8-2m) /2 < < N-2nm.

N Proof. Let ¢ = 4w - N. Then, H,, = (N-c)Im ted . Let #* be the principal

T and hence 522 is nonsingular. Since M12 and M23 are obviously zero matrices,

: submatrix of (EE') having the rows and columns correspending to {u’AlAQ’A1A°’°"’AlAm}‘
i Tuen it can ba checked by direct calculation that M22 = 4*. Also, since T eZ?,

g

3

this implies Pank (EE') > 2m. But Rank (EE') = Rank (E) < N; hence N > 2m.
Also, the numder of degrees of freedom for error is n, < N-Rank (M) and thus

g <N - 2m. [inally, let T Eiﬁi and let (M*%) be the principal submatrix of

{M)T serpesponding to u, and 2-factor interactions. Now T can be divided into

2

™o ganis Tl and T2 = ?i. Then it can be checked that M** is the came for T2

as for 1,, except for a constant multiplier. Thus R(M**)T = R(M**)T < N/2, and
b 1

( = &
R(M)T = R(M22)T + R(M T <m+ N/2

Hence n, > N - (N + 2m)/2 = (N - 2m)/2, proving (3.14).
Theorem 3.5. wet T ejf%, then T is trace optimal in;ék if one of the following
hoids for sore positive integer a.

“3.17) (i) =4 andw =«

(3.18) {23} 2 +2andw =a + 1

Ll

L Proof: From lemme 4.1, and {3.8) we have

t (H-l m-1 3
P N = -
o) =22 % sygg v HeeD® < (rooit

= f(w),

say, where flw) is 2 fiaction of @ for fixed m and N. Suppose @ were a continuous
variable. Then

. _ df(w) _  -4m{m-1)(N-4w)[Yw(m-2) - (m-u)N]
(3.19)  fw) = —g— = e 120 (m- Do = (m-2)N1Z

i
t
|
|
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and £'(w) = 0, when w = N/% or @ = (m-4)N/4(m-2). The root w = (m-4)N/4)(m-2)

is extraneous since by Theorem 3.3, w > N(m-2)/4(m-1). Since the denominator of
{3.19) is always positive it is easv to see that f'(w) < 0 if «w < ¥/# and > 0

if w > N/u. Hence f{w) attains an absolute minimum when o = N/4% and (3.17)

is proven. Now, suppose N = l4a + 2. Since w can take only integer values,

»w = N/4 is not possible. Hence we must find the integer value of w which makes

f{w) as small as possible. Since f(w) is strictly decreasing on (N(m-2)/4(m-1),N/u)
and increasing on (N/4,N/2) the absolute minimum can occur either at w =a = N/4% -~ 1/2

or w = a + 1 = N/4 + 1/2. But it can he checked that

16m{(m-1)(2-m) <

fla + 1) - #o) = EoEymONRG- DI 2T <

since m > 2, and N > 2m. This completes the proof.

Thecrem 3.6. Let T ¢ Z? , then if T is trace optimal in f%, if T is determinaat
optimal and conversely.

Proof. Let

£ (w) = |4, | = 8- - (m-2)NI[2N - s]™ 3,

! 22
We must show that for any {even) N.IMQQI and tr(M;;) become minimum for the same
value of w.
Then

N m-2

fi(w) = 4m(m-17(2N-4w) “(N-dw),
The roots of fi(w) = 0 are w = N/2 or w = N/4. Among these w = I'/Z is not ir tne
domain of £ Again ic is easy to see that fl(m) is incredsing on (N(m-2)/4(in-1).
N/4) ard decreasing on (N/4, N/2); thus an abscluce maximum is reached at w = n/4%

and the theorem is proven if N = 4o , « an integer. When N = da + 2, we have

£(x + 1) ~ £la) = (227 - ()" + amf(N-2""1 (we2)™ 13

(N+2)m_lQm, say, where

+2)" 1 om(2+8™ ) - u(1- 8) R (1-8™ 1,

%,

g S e 2D e
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where B = (N-2)/(N+2). Now Q; = 32(N+2) > 0. This proves the result for m=3,
since fl(c +1) - fl(a; > 0. For larger n, it is clearly sufficient to show
that Qm is an increasing function of m. But it can be checked that
Q - Q_; = 201-B)0C1-8""0) + 8(1-8"%) + ..., + g™ 2(1-g"™],
N -1
which is > 0, since B8 < 1. This completes the proof.

Theorem 3.7. Let T ¢ N? then trace optimality of T implies maximum root optimality,

and conversely.

Proof: Frcm lemma 3.1 the characteristic roots of M;; are [4(m-L)w - (m—Q)N]"l

and (28-8w)" Y. Now

(3.20) [4(m-1)w - (m-2)K] <, =, or > 2N-4 , according as w <, =, > N/4,

If N=4a, it is obvious from (3.20) that the maximum root of M;; takes the smallest

value when w = K/4. When N = 4a + 2, the max. root of M;; is (H(m=-l)w - (m-2)l\i]"l

or [2N ~ Uw]-l according as w = a or a + 1.

But {3.20) shows that among these, the value of the max. root of M22 is smaller

at w = a + 1. This completes the proof.

Theorem 3.8. Let Tl be the incidence matrix of a BIBDU with parameters
— 7

(v* = m,b*,p¥ A%) such that T = Tl e T, ezar Let(z denote the class of fractions

cbtainable from BIBD's in thi: ranner. Then T is crace optimal within & if there

exists an integer e such that any of the following conditions hold:

() b

il

4o + 65 8 =0, 1, or 2, and r* - A% = o,

{(ii) Db =t4a + 3, and r¥ - 1% = ¢ + 1,
Proof: It has already been shown that if T = T, & Ti, then v = b - 2(r¥ - %)
and N = 2b%, Thus % - A% = (b-w)/2.

¥hen b*

4o, we gec i

4(2a), and the optimum value of « is 2a so that r® - A% = q.

When b® = 4o + 1, we get N = 4(2a) + 2, and the optimum value of w is {2a +1),

H
!
i
i
!
i
i
i

-
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so that r* - A% = a. Next, suppose b* = 4a + 2. Then N = 4(2a + 1) aund tbhe

AR TE e W

algebraically optimum value of w is (2a + 1) .hich implies (r* - A%} = (o + 1/2),
which is not possible since r*, A% and a are integers. Hence the combinatorially
possible cptimum value of w is either 2o or (2a + 2). Define f(w) be as in the

proof of theorem 3.5. Then

-64(m-1){m-2)
- 2)[N+4(m-1 1(N/2 + 2)[N-4(m-1)]

3 ; (20 + 2) - £(2q) = %

| A

(

=

which is <, or > 0, ace~~ding as N >, or < 4(m-1). But N < %(m-1; implies

w < N(m-2)/i(m-1). Henze « - 20 + 2. Tnus part (i) is proven, since

Ui S8 AN N Ot

e

% - A% = [(Ba + 2) - (20 + 2)1/2 = u.

If b* = g + 3, then N  4(2¢ + 1) + 2 and from theoram 3.5, che algebraically

A STl T A SN AT

optimum value for » is (2u + 2). However, w = 20 + 2 leads to r* - 2% = (a + 1/2).

Thus the choice for actuval optimum is between v = (20 + 1) or w = (20 + 3).

o PTG

The remainde of the proof is identical with the preceeding, and will be omitted

o

to avoid repetition.

5 4. Balanced Designs for the 2™ Factorial Experiment

Several balanced fractions are available for the 2" factorial experiment

=
O

] : which permit estimates of main effects free of two factor interactions. Certain

TSI

fractions will now be presented a2long with a note on their optimality.
Def. 4.1. 1If Tl and T2 are two balanced fractions w'.th N as<emblies each, the

efficiency of 'I‘1 relative to T, will be defined as

W gy iR SR A R P

i A RS Kt e

X

A b

(+.1)  EFE(T,/T,) = [tr(EE');i}[tr(EE');i]'

4 ] Th> efficiency Eff T), of a balanced fraction T, is defined as the relative

efficiency of T relative to a (possibly nonexistent) fraction satisfying the

e em - T e e s L e el ST
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optimality condition of theorem 3.4. We now present some actual designs obtainable

by the method of the last sectiomn.

Series I. Let T

H]

: : I = T is obtai £ :
[Jmp' omp' Im. Im], wherz Im is obtained from the matrix Im

by interchanging 0 and 1. For these fractions, |T| = 2(m+p}, and

o o €

ylm(mie) ~ #{(m-1)3{2m + o - 23°

E££(T) v - =
(m+0)™ (2m+p-1) (m+5-1) [(mip)(m-1) - 4(m-2)]

n

where ¢ equals 0 or 1 according as (mip) is even or odd. It can be checked by
direct calculation that the efficiency of these designs decreases z2s m and p

increase, from about 70% form = 7, 2 = 0, tc about 25% for m = 12, ¢ = 5.

As an example of a fraction constructed from balanced incomplete block

e 1 e WA g Y ITIERER o BURYPY TR R

designs, consider the series of BIBD with parameters (v® = m = u)x® + 3, b® =

BA%R 4 3, y¥ o= 2% 4+ 1, K& = 2% + 1, A%), where 4)* + 3 is a prime power,or a

prime. Their exictence is proved in Bose (19%0). Let Tl be the incide- : matrix

of a BIBD of this form.

Series II, Let T=J . ®0 ., ®T. ® T.. Then N = 4(2A% + 2) and w = (2% + 2).
S AL mt mi 1 1

The number of d.f, for errcr is 1. Also, the efficiency of these fractiosns
equals 1, so that they are optimal. It is interesting to note that if the twe

assewblies represented by Jml

is reduced to W{A® + 1)/(&x % % 3).

and Oml are omitted from the design, the efficiency

Series III. Let 20% + 1 < m < 4)x% + 3, and cut out (4x% + 3 - m) varieties from
the BIBD given in series II. Then a design with parameters (m, b = 4X¥* + 3,

» = 2A% + 1, 1) is cbtained, and with w = (2\* + 1). From theorem 3.5 the optimum
value of w is (2A* + 2), and the efficiency of the design may be computed by
substitution. If a column of 1's and a column of O's is adjoined to T, then N =

4(2x% % 2) and © = (22% + 2) and the efficiency of the designs in this series becomes 1.

Ans

ot MRS e 7
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In the following table we give fractional designs of resolution IV for
the 2" series when 7 <m < 12, and for several practical values of N. To obtain
the set of assemblies in the design, first write the incidence matrix T? of a
BIBD with parameters as given in the table, and then cut out any v® - m rows.
One such BIBD in each case is given in Cochran and Cox [(1960), pp. 469] with
pian number as given in the table. Then adjoin (N/2 - b) columns of zeros to T¥

1
and call this matrix T.. The final set of assemblies is then T =T, & T, where

1 1 1
Ti is obtained from Tl by interchanging 1's and 0's. It should be noted that
there are several BIBD's, in addition to the one listed, which will give fractional
designs with the same parameters. From the point of view of efficiency these
designs are equivalent; however, they may differ with respect to the number of

degrees of freedom for error. This aspect of the designs is too cumbersome

to be studied here, except that we have (N - 2m}/2 < n_ < ¥ - 2m by Theorem 3.4,

e
The efficiency given in the table for the designs iIs relative to the class
A
of all balanced fractional designs. Within the class of designs of the form

Tl ] Ti, where Tl is the incidence matris ¢f a BIBDU, the designs given are

optimal.
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Table 1
m=7 m=8 m=9
N (b%ri¥ € Plan (b%rixd € Plan ! (o%rgxd £ Plan
E 16 (7,3,1) 1.00 7 ;
% 18 (7,3, 1.00 7
% 20 (7,3,1) 0.88 7 ' '
% 22  (11,5,2) 0.%4 19 i (11,5,2; o0.91 1 | (11,5,2) 0.85 19
% 24 (11,5,2) 1.00 1S (12.8,5) 1.00 13 (12,8,5) 1.00 i3
5 26 (13,4,1) 1.00 22 (13,4,1) 1.00 22 (13,5,1) 1.00 22
4 28  (14,7,3) 0.3 1¢ (13,4,1) 0.92 22 5 {33,4,1) 0.92 22
§ 30 (15,6,2) 0.98 16 (15,6,2) 0.97 16 ; (15,6,2) 0.96 16
g 32 (16,6,2) 1.00 27 (15,10,6) 1.00 29 | (16,10,6) 1.00 29
% 34 (15,7,3) 1.00 25 {16,10.6) 1.00 29 | (16,10,67 1.00 29
§ 36 (16,6,2) 0.95 27 (16,10,6) 0.95 26+ (18,9.4) 0.9% 17
% 38  (19,9,4) 0.93 31 (18,8,3) 0.99 1o (18,8,37 0.98 11
% 40 (18,8,3) 1.00 11 ! (18,8,3) 1.00 11 ., (19,10,5) 1.00 32
3 | :
m = 10 m = 11 m= 12
1
N {(bIri®) € Plan (bEr3® e Flan | (biry® € Plan
22 (11,5,2) 0.76 19 (11,5,2) 0.57 19 ;
2 (11,3,2) 1.00 19 (11,5,2) 1.00 18 !
: 26 (13,4,1) 1.00 22 (11,5,2) 1.00 13 § (13,4,1) 1.00 22
: 28 {13,4,1) 0.91 22 : (11,5,2) ©0.91 22 ' (13,3,1) 6,91 22
30 (15,6,2) 0.98 16 (15,7,3) ©0.91 25 ; (15,7,3) 0.88 25
32 (16,6,2) 1.00 27 ¢ (18,6,2) 1.00 27 ! (18,6,2) 1.00 27
38 (16,6,2) 1.00 27 (16,6,2) 1.00 27 } (18,6,2) 1.00 27
36 (16,6,2) 0.9 27 ' (16,6,2) ©0.9% 27 i  (16,6,2) 0.9 27
38 (19,9,4) 0.97 31 3 (19,9,4) 0.97 21 ; (18,9,4) 0.9 31

40 (18,9,4) 1.00 31 (19,9%) 1.06 31 ! (12,9,4) 1.00 31
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